
It was about 120 years ago when
Mark Twain used the phrase “more
than one way to skin a cat.” In
the world of PLC programming,
that cliché is still applicable today.
Thanks to the International
Electrotechnical Commission
(IEC), five standard programming
languages have emerged as the most
common, used for both process and
discrete programmable controllers.
The IEC is an organization
that prepares and publishes
international standards for all
electrical, electronic and related
technologies, including controllers.
With its IEC61131-3 publication,
the organization identifies these
five programming languages and
their common abbreviations as:
Ladder Diagram (LD), Instruction
List (IL), Function Block Diagram
(FBD), Structured Text (ST) and
Sequential Function Chart (SFC).

Long dismissed as just being
a European phenomenon, the
IEC’s programmable controller
languages are gaining traction
in the United States. The IEC
developed these programming
standards in response to the
growing number of automation
vendors, the growing complexity of

applications, and the multiplying
methods for implementing control
functions. But many controls
engineers may be wondering
about the characteristics of each
programming language. When
should one be used over another?
What are the benefits and
disadvantages of each? This article
will provide a brief overview and
comparison of each of the five
main PLC programming languages.

Understanding the IEC61131-3
Programming Languages

Electric Drives
and Controls Hydraulics

Linear Motion and
Assembly Technologies Pneumatics Service

 Drive & Control profile

The complexity of the application, the
capabilities of the PLC/PAC and the ability
to transfer the program code are among
the key factors to consider with selecting
controller programming language.

Choosing Your Language

The International Electrotechnical
Commission (IEC) identifies five
standard programming languages
as the most common for both
process and discrete programmable
controllers: Ladder Diagram (LD),
Function Block Diagram (FBD),
Sequential Function Chart (SFC),
Instruction List (IL), and Structured
Text (ST)

With the different programming
languages available, it’s important to
consider a few factors before deciding
which to use for your application:

Ease of maintenance by the final •	
user: SFC
Universal language acceptance: LD•	
Acceptance in Europe: IL or ST•	
PLC speed of execution: IL or ST•	
Applications mainly using digital •	
I/O and basic processing: LD
or FBD
Ease of changing code: LD•	
Ease of use by newer engineers: ST•	
Ease of implementing complex •	
mathematical operations: ST
Applications with repeating •	
processes or processes requiring
interlocks and concurrent
operations: SFC

Ladder Diagram (LD)
This programming language,
invented in the U.S. decades ago,
is probably the most widely used.
Invented to replace hardwired relay
control systems, Ladder Diagram
programming is a mainstay in the
U.S. today, used in probably 95
percent of all applications. Visually,
this language resembles a series
of control circuits, with a series of
inputs needing to be “made” or
“true” in order to activate one or
more outputs.

Ladder Diagram language has
experienced such widespread
adoption that almost every
programmer in any country or
industry can read and write this
language. Because it resembles the
familiar electric circuit format,
even a non-programmer with an
electrical background can follow
the program for purposes of
troubleshooting a problem. It’s also
easy to start writing a program
in Ladder Diagram. With just a
basic outline of input and output
signals, one can sit down are start
churning out code. Most of the
other IEC languages require more
preparation, such as flowcharting
all the potential process flows.
Finally, most implementations
of Ladder Diagram allow a
program to be organized into
folders or subprograms that
are downloaded to the PLC,
allowing for easy segmentation.

Ladder Diagram programming is
ideal for a simple material handling
application, for example, where
a sensor detects the presence of
a box, other sensors check for
obstructions, and then an output

fires an actuator to push the box
to another conveyor. Digital inputs
are checking for various conditions,
and a basic program is analyzing
the inputs and firing digital outputs
in response. There may be timers
in the program, or some basic
comparisons or math, but there are
no complex functions involved.

As the complexity of PLC
functionality has grown, however,
Ladder Diagram language has
been challenged to meet these
advances and still maintain the
paradigm of easy visualization and
understanding. Functions such
as PID, trigonometry and data
analysis are commonly required
in many control applications, but
difficult to implement. Another
challenge is that as program size
grows, the ladder can become very
difficult to read and interpret,
unless it’s extensively documented.
Finally, implementing full
processes in Ladder Diagram can

be daunting — picture a ladder
rung with an output used in several
phases of a process with many input
conditions attempting to control
exactly when that output needs to
turn on.

Function Block Diagram
Although Ladder Diagramming
may be the most widespread
language, a survey conducted by
Control Engineering magazine
several months ago highlighted
growth in the use of programming
languages other than ladder.
Function Block Diagram
programming is an example.
Even though the adoption rate for
this language has recently slowed
relative to other languages such as
Structured Text, Function Block
Programming is probably the
second most widely used language.

In many ways, this graphical
language resembles a wiring
diagram even more so than

This language resembles a series of control circuits, with a series of inputs needing to be
“made” or “true” in order to activate one or more outputs.

turned off, and the next one in the
sequence is active. The transition
step also has code to check that the

Ladder code. With Function
Block Diagram, the blocks are
“wired” together into a sequence
that’s easy to follow. It uses the
same instructions as Ladder, but
visually is more understandable to
a viewer who is not versed in relay
logic. The major advantage is that
programs written in Function Block
tend to be easy to follow — just
follow the path! This language
is ideal for simpler programs
consisting of digital inputs, such
as photoelectric sensors, and
outputs such as valve manifolds,
and could be appropriate in any
application where Ladder is ideal.

However, this language is not ideal
for large programs using special I/O
and functions. The large amount of
screen space required by this style
of programming can quickly make
a program unwieldy if it reaches
any substantial size. Also, writing a
program in Function Block requires
more preparation upfront to
understand the program and how it
will flow before any code is written,
since it can be more difficult to
make corrections later.

Sequential Function Chart
Sequential Function Chart (SFC)
programming resembles the
computer flowcharts that many
will remember drawing up in
their college days. An initial step
“action box” (the starting point
of a flowchart) is followed by a
series of transitions and additional
action steps. The concept of SFC
is simple: an action box, with code
inside written in any language of
the programmer’s choice, is active
until the transition step below it
activates. The current action box is

necessary conditions are met to
allow the program to advance to
the next step.

With Function Block Diagram, the blocks are “wired” together into a sequence that’s easy
to follow. It uses the same instructions as Ladder, but is visually more understandable to a
viewer who is not versed in relay logic.

In this example, SFC programming includes a flowchart on one side and two small
programs to the right. In an SFC program, the flowchart boxes (called actions) and the
little horizontal lines with names (called transitions) actually have small programs running
inside them.

For appropriate applications which
have a repeatable multi-step process
or series of repeatable processes, this
form of programming is the easiest
to implement. An example would
be a pick and place application,
where product is constantly picked
up from one area, moved through
a specific path, and placed in
another area. While exceptions
exist, since there is typically only
one active piece of code and
one transition to be concerned
with, condition checking and the
control of the process should be
achievable without large rungs.
The language is also very friendly
to maintenance engineers because
the visual nature of the program
plus code segmentation makes it
easy to troubleshoot. For example,
if the mechanism in a pick-and-
place application has moved to
the product but not picked it, the
troubleshooter could bring up the
program and look at the transition
condition between the “move
to product” box and the “pick
product” box to see what is holding
up the process.

On the downside, this style of
programming is not suitable for
every application, as the structure
that is forced on a program could
add unneeded complexity. A large
amount of time must be spent up
front preparing and planning before
any programming is attempted
or else the functions charts could
become unwieldy and difficult
to follow. The overhead required
for this type of program causes it
to execute slower than the other
languages. A final consideration
is the inability to convert to
other languages. Instruction

List, Function Block and Ladder
programs can easily be converted
into each other, allowing a piece
of code to be displayed in the
way most comfortable to the
user. Structured Text can also be
converted into any of these three
languages, but SFC stands alone.
It cannot be converted. Therefore,
you may want to consider this
language only for end users who
are comfortable with the language
and are unlikely to display it in a
different format, or for applications
where the hardware has the speed
and memory necessary to store and
execute an SFC program.

Instruction List
Anyone who has experience
programming microprocessors or
experience with Assembler language

programming will see similarities
with Instruction List programming.
This language consists of many lines
of code, with each line representing
exactly one operation. Thus, it is
very step-by-step in layout and
format, which makes the entry of
a series of simple mathematical
functions easy. In addition, if the
programmer uses only the IEC-
defined instructions, a program
written in this language can be
moved easily between hardware
platforms. These advantages make
this language very popular in
Europe, a fact that is surprising
to many U. S. programmers who
prefer the ease of maintenance
in the graphical languages, and
place a lower premium in the
transferability of programs.

Instruction List consists of many lines of code, with each line representing exactly
one operation.

Instruction List language is a low-
level language and as such, will
execute much faster in the PLC
than a graphical language, like
Ladder. This language is also much
more compact and will consume
less space in PLC memory. The
simple one line text entry method
supported by this language also
allows for very fast program
entry — no mouse required, no
tab to click! In legacy systems,
programs written in this language
are easier to display and edit on a
handheld programming unit, with
no software or laptop required.

Despite the advantages this
language provides to a programmer,
it seems that maintenance and
service engineers do not prefer
Instruction List. Perhaps because
it is less visual than Ladder, and
therefore more difficult to get
a sense of what the program
is doing and what errors it is
experiencing. Similar to the
issues with Ladder Diagram
and increasing PLC program
complexity, it can be a struggle to
enter complex functions such as

PID in Instruction List. This also
applies to complex mathematical
computations. Instruction List does
not lend itself well to any form of
structured programming, such as
state programming or step ladder,
further limiting its usefulness for
implementing large programs. It is
also arguable that the advantages
of speed and compactness are
less relevant, given the processing
speeds of modern PLCs and the
large amounts of memory available.

Structured Text
With its IF…THEN loops, CASE
selectors, and lines ending in
semicolons, Structured Text
language closely resembles a high-
level computer programming
language such as PASCAL or C. The
aforementioned Control Engineering
survey indicated that of all the
IEC61131-defined programming
languages, Structured Text has seen
the greatest increase in adoption.

This language perhaps best
embraces the growing complexity
of PLC programming, such as
the process control functions

involved in plastics or chemical
manufacturing. Trigonometry,
calculus, and data analysis can
be implemented far easier in
this language than in Ladder or
Instruction List. Decision loops
and pointers (variables used to
do indirect addressing) allow
for a more compact program
implementation than can be
achieved in Ladder. The flexible
Structured Text editor that is
common in most programming
packages makes it easy to
insert comments throughout
a program, and to use indents
and line spacing to emphasize
related sections of code. This
makes the task of structuring
a complex program easier. The
text-based, non-graphical nature
of Structured Text, similar to
Instruction List, also runs much
faster than Ladder. An additional
benefit of Structured Text is that
it comes closer than most of the
other languages in achieving the
transferability promise of the
IEC61131 standard. Copying and
pasting Structured Text from the
editor of one programming package
to another can often be done with
just a few changes, emancipating
a programmer from the hardware
platform. A final benefit is that
many students currently graduating
from engineering studies have a
better background in computer
languages than in the basics of
electrical wiring, and therefore can
be more proficient in Structured
Text than Ladder programming.

A disadvantage is that for
many previously experienced
programmers or maintenance and
service personnel, the Structured

Structured Text language has seen the greatest increase in adoption and closely
resembles a high-level computer programming language such as PASCAL or C.

2009 Bosch Rexroth Corporation
Subject to change without notice.
Printed in USA.
ALL RIGHTS RESERVED
FORM ControlProgramming (0109)

Bosch Rexroth Corporation
5150 Prairie Stone Parkway,

Hoffman Estates, IL USA 60192-3707
Telephone (847) 645-3600
www.boschrexroth-us.com

Text environment is somewhat
unfamiliar and unsuitable for
troubleshooting. In many ways,
the code and structure necessary
to make this code maintenance
friendly can reduce some of
the advantages gained from its
compactness. As a result, the main
tendency is to use Structured Text
“behind the scenes.” For example,
IEC 61131 allows a programmer
to build his or her own functions
in one language, which can then
be used in another language. Thus
the programmer is most likely
to encapsulate a Structured Text
program inside an instruction
called on in Ladder. While this may
not necessarily be a disadvantage,
the programmer will need to
thoroughly test any code that is
“hidden” and make sure it is bug-
free, since others will not have
access to it.

Choosing an
Appropriate Language
With the different programming
languages available, it’s important
to consider a few factors before
deciding which to use for your
application. Of course, if you’re
already familiar with a certain
language, then the tendency may
be to stick with what you know.
However, look at some of these
match-ups:

Ease of maintenance by the final •	
user: SFC
Universal acceptance of •	
language: Ladder
Acceptance in Europe: •	
Instruction List or
Structured Text
Speed of execution by the PLC: •	
Instruction List or
Structured Text
Applications mainly using digital •	
I/O and basic processing: Ladder
or Function Block
Ease of changing code •	
later: Ladder
Ease of use by newer engineers: •	
Structured Text
Ease of implementing complex •	
mathematical operations:
Structured Text
Applications with repeating •	
processes or processes requiring
interlocks and concurrent
operations: SFC

Finally, your PLC or PAC platform
may also affect the choice of
programming languages. Not
all automation vendors have
programming software that is fully
IEC61131-3 compatible. In fact,
most of the non-European vendors
do not offer this functionality, or
only have a very limited spectrum
of options, say Ladder and SFC, but
none of the other languages or tag-
based addressing, etc.

Another consideration is that not
all PLCs are capable of running
the various IEC languages due
to lack of memory or processor
speed. This tends to be the case
with many micro PLCs. However,
some companies like Bosch Rexroth
make robust PLCs that can run
all of the languages. While many
programmers are locked in to a
customer specification, if they
have the freedom to choose a
hardware platform, they should
decide which language or languages
will work best for the application
and then select the hardware
and software accordingly.

Not all PLCs are capable of running
the various IEC languages due to lack
of memory or processor speed. However,
some companies like Bosch Rexroth make
robust PLCs that can run all of
the languages.

