

KNOWLEDGE IN DETAIL

Hydraulics

Basic Principles

Knowledge in Detail

Hydraulics – Basic Principles

Imprint

Knowledge in Detail Hydraulics – Basic Principles

Publisher:

Bosch Rexroth AG Bosch Rexroth Academy Unterduerrbacher Straße 10 97080 Wuerzburg, Germany

We do not assume any liability for the conformity of the content with the respectively applicable legal regulations. Subject to change.

Edition 1 (2022) Material number: R901566373 ISBN: 978-3-9820731-5-6

The data specified only serves as a product description.

Due to the continuous further development of our products, no statement regarding a certain property or suitability for a certain purpose can be derived from our specifications. The information given does not release the user from the obligation of own judgment and verification. It must be noted that our products are subject to a natural process of wear and aging. Figures are examples only and may differ from the original product.

Advanced training with the Bosch Rexroth Academy

Bosch Rexroth AG has established itself as a competent partner for basic and advanced training of numerous business and institutions.

The portfolio of the Bosch Rexroth Academy as central department for advanced training of Bosch Rexroth AG includes customized offers for various technologies including hydraulics, pneumatics or mechatronics for any educational needs.

The educational offer of the Bosch Rexroth Academy include:

Training

The trainings of the Bosch Rexroth Academy offers practical and targeted knowledge. The offers cover classical face-to-face training in training facilities as well as web-based e-learning on the PC.

Training systems

The modular training systems of Bosch Rexroth AG are precisely tailored to the required qualification levels of industrial and educational institutions.

Each training system consists of the workstation, the components contained in the device sets and the exercise books. The training systems provide both beginners and advanced trainees with practical knowledge in the fields of hydraulics, automation (electrical drive and control technology, mechatronics) and pneumatics.

The modular training systems developed by the Rexroth specialists provide beginners and advanced employees with hands-on technology, know-how and solution competence. Founded practice-oriented knowledge can be experienced by means of industrial serial components – with internationally standardized programming languages and open interfaces.

Training and learning media

The handbooks, software or animations of the Bosch Rexroth Academy provide mobile access to knowledge and are perfectly adapted to the training offers and systems.

For the current educational offer and more learning products of the Bosch Rexroth Academy, please refer to the following website:

www.boschrexroth.com/academy

Table of contents

Imprin	it	2
Advan	ced training with the Bosch Rexroth Academy	3
Table	of contents	5
1 G	eneral information	9
1.1 I	ntroduction to hydraulics	9
1.1.1	Definition	9
1.1.2	Historical development	9
1.1.3	Fields of application of hydraulics	10
1.2 [Drive technologies in comparison	13
1.2.1	Drive technologies	13
1.2.2	Comparison of drive technologies	14
1.2.3	Differences in energy supply and conversion	15
1.2.4	Differences in energy distribution	15
1.2.5	Properties of the transmission medium	16
1.2.6	Properties of drive technologies	17
1.2.7	Conclusion	18
1.3 0	Graphic symbols	18
1.3.1	Purpose	18
1.3.2	Graphic symbols according to DIN ISO 1219	18
1.3.3	Graphic symbols according to DIN ISO 1219 – Pumps, motors, cylinders, accessories	19
1.3.4	Graphic symbols according to DIN ISO 1219 – Hydraulic valves	22
2 Ba	asic principles of physics	25
2.1 E	Basic principles of hydraulics	25
2.1.1	Hydrostatics – Pascal's Law	25
2.1.2	Hydrodynamics - Bernoulli's Principle	30
2.1.3	Viscosity of fluids	31
2.1.4	Orifices in hydraulic lines	35
2.1.5	Pipe flows	37
2.1.6	Compressibility of fluids	40
2.1.7	Cavitation	42
2.2 E	Basic principles of mechanics	46
2.2.1	Path, velocity and acceleration	46
2.2.2	Force and torque	48
2.2.3	Energy and work	52
2.2.4	Performance	54
2.2.5	Efficiency	55
2.2.6	Connection between hydraulic and mechanical quantities	57

3 Components of hydraulic systems 59

Pressure medium, displacement, characteristic curves	59
	59
· ·	
Characteristic curves and characteristic zones of pumps and motors	67
lydraulic pumps	75
External gear pumps	75
Internal gear pumps	81
Vane pumps	83
Axial piston pumps – swash plate design	89
Axial piston pumps – bent axis design	94
Radial piston pumps with internal support	99
Radial piston pumps with external support	102
Annular gear pumps	104
Screw pumps	106
Pump regulating systems	109
Hydraulic pumps in comparison	121
lydraulic valves	125
Overview of hydraulic valves	125
Operation of hydraulic valves	133
Directional control valves	136
Operating behavior of directional control valves	143
Pressure relief valves	148
Pressure reducing valves	156
Pressure sequence valves	162
Pressure cut-off valves	168
Non-return valves	172
Pilot-operated non-return valves	175
Throttle valves	180
Flow control valves	185
lydraulic cylinders	191
Basic principles of hydraulic cylinders	191
Ram type cylinder	199
Telescopic cylinders	201
Differential cylinders	205
Servo cylinders	209
Double-acting cylinders	213
	characteristic curves Hydraulic fluids in comparison Displacement principle and its application Characteristic curves and characteristic zones of pumps and motors Hydraulic pumps External gear pumps Vane pumps Axial piston pumps – swash plate design Axial piston pumps – bent axis design Radial piston pumps with internal support Annular gear pumps Screw pumps Pump regulating systems Hydraulic pumps in comparison Hydraulic pumps in comparison Hydraulic pumps of directional Control valves Operating behavior of directional control valves Pressure relief valves Pressure relief valves Pressure sequence valves Pressure

3.5 H	lydraulic motors	217
3.5.1	External gear motors	217
3.5.2	Internal gear motors	221
3.5.3	Vane motors	224
3.5.4	Axial piston motors - swash plate design	228
3.5.5	Axial piston motors - bent axis design	232
3.5.6	Radial piston motors with internal support	237
3.5.7	Radial piston motors with external support	241
3.5.8	Annular gear motors – Gerotor principle	244
3.5.9	Annular gear motors – Orbit principle	246
3.5.10	Hydraulic motors in comparison	250
3.6 0	Connection technologies	251
3.6.1	Connection technologies in comparison	251
3.6.2	Pipe and hose lines	254
3.6.3	Vertical stacking	260
3.6.4	Manifolds	262
3.6.5	Control blocks	264
3.7 A	Accessories	267
3.7.1	Hydraulic accumulators	267
3.7.2	Hydraulic filters	277
3.7.3	Coolers	281
3.7.4	Manometers	286
3.7.5	Pressure switches	290
3.7.6	Pressure transducer	293
3.7.7	Digital pressure indicators	294
3.7.8	Filling level measurement	294
3.7.9	Flow measurement	295
3.7.10	Temperature measurement of hydraulic fluids	296
4 Ba	asic circuits of hydraulics	297
4.1 C	Circuit diagrams in hydraulics	297
4.1.1	Graphical illustration of hydraulic circuits	297
4.2 0	Open and closed-loop control	
v	vith valves	300
4.2.1	Open-loop control with directional control valves	300
4.2.2	Velocity control with throttle valves	304
4.2.3	Load-independent velocity control with flow control valves	309
4.2.4	Rapid traverse circuits	312

4.3	Hydrostatic drives	316
4.3.1	Hydrostatic operating principles in comparison	316
4.3.2	"Predefined flow" operating principle	322
4.3.3	"Predefined pressure" operating principle	329
4.3.4	"Predefined pressure difference" operating principle	334
4.3.5	"Predefined speed" operating principle	335
4.3.6	"Predefined power" operating principle	338
4.4	Pressure and force-depending	
	control systems	339
4.4.1	Pressure limitation in hydraulic systems	339
4.4.2	Control system with pressure switch	342
4.4.3	Control of actuators with low operating pressure	346
4.4.4	Control of actuators in parallel operation	348
4.4.5	Circuits with hydraulic accumulators	353
5 H	lydraulic power units and systems	359
5.1	Hydraulic drive units	359
5.1.1	Drive units in hydraulics	359
5.1.2	Design of a hydraulic power unit	360
5.1.3	Modular standard power units	364
5.1.4	Modular standard small power units	365
5.1.5	Smart connected supply systems	366
5.1.6	Modular large power units	366
5.1.7	Low-noise compact power units – Silent power units	367
5.1.8	Individual power units	368
5.1.9	Drive modules	368
5.1.1	0 Clamping and drive modules	369
5.1.1	1 Compact modules	370
5.1.1	2 Drive units	370
5.1.1	3 Hydraulic power units in comparison	371
5.2	Variable speed pump drives (Sytronix)	372
5.3	Training systems in hydraulics (training power units)	374
Inde	ex (377

1 General information

1.1 Introduction to hydraulics

1.1.1 Definition

Hydraulics is the science of resting and flowing fluids. In technical practice, hydraulics is generally understood as the generation of forces and motion by hydraulic fluids. The term is derived from the ancient Greek words "hydor" (water) and "aulos" (pipe).

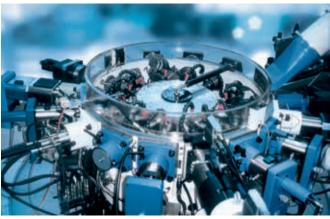
1.1.2 Historical development

As far back as the ancient world people were utilizing the energy of flowing water. For example, there is evidence to suggest that the first water wheels were built around 300 B.C. They are still being used today in watermills and their technical advancement can still be seen in the water turbines of power stations.

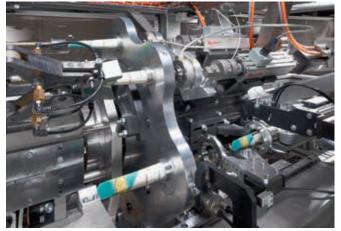
as of approx. 5000 B.C.	People utilize the energy of flowing water.	
approx. 300 B.C.	The first water wheels are created and represent a milestone in the technological history of mankind.	
as of approx. 1600	Water pressure is used as drive power.	
1653	French physicist Pascal (1623-1662) illustrates the hydrostatic principle using the hydraulic press as an example.	
1795	British engineer Joseph Bramah (1749-1814) produces a hydraulic press using water as a hydraulic fluid for generating large forces. He is thus considered to be the developer of industrial applications in hydraulics.	
1851	1851 British industrialist William G. Armstrong (1810-1900) develops an accumulator ("weight accumulator") with which large flows can be generated	
1905	Beginning of oil hydraulics: Williams and Janney use mineral oil as a transmission medium for hydrostatic transmissions for the first time.	
1922	The engineer Hans Thoma invents the radial piston pump and develops it further for industrial use. The technical field of industrial hydraulics develops and becomes increasingly important.	
as of approx. 1950	Oil hydraulics becomes prevalent in all areas of industrial hydraulics. The first servo valves for industrial hydraulics come into use Proportional control valves with analog electrical control are developed on constructive basis of on/off valves and introduced to industrial applications.	
as of approx. 1980	Introduction of digital electronics in continuous control valve technology and associated with the development of digital control technology.	
as of approx. 2015	With "Industry 4.0", comprehensive digitalization and networking of components and functional sequences as well as complete linking with adjacent technology areas are also making their way into hydraulics.	

Overview of the history of hydraulics

1.1.3 Fields of application of hydraulics


Hydraulic systems are used in the fields of power transmission and in both open and closed-loop control technology. In order to classify the variety of possible fields of application, a distinction is generally made between **industrial hydraulics** (or stationary hydraulics) and **mobile hydraulics**.

Applications in industrial hydraulics


The term industrial hydraulics comprises applications in which hydraulic components are used in fixed installations. Examples include machine tools, plastics processing machines, presses and applications in the rolling mill industry.

Plastic injection molding machine

Hydraulic axis

Processing machine for cardboard

Blank cutting line in the automotive industry

Tower Bridge in London

Deep-sea winch

Lock in the Panama Canal

Offshore wind farm

Tunnel boring machine

Francis turbine

Applications in mobile hydraulics

Mobile hydraulics comprises applications in which hydraulic components are installed in mobile machines. For example, here hydraulics is used in hydraulic excavators, wheel loaders, road rollers, snow groomers, tractors, lift trucks, or municipal vehicles.

Mobile excavator

Tractor with hoist

Snow groomer

Caterpillar crane

Truck mounted heavy duty crane

Wheel loader

1.2 Drive technologies in comparison

1.2.1 Drive technologies

Solutions from the technological fields of hydraulics, pneumatics, electrics and mechanics come into use when designing drives:

- In hydraulic drives, motion is generated by means of hydraulic fluid. Hydraulic drives are used in many industrial fields as well as in mobile machines such as in excavators.
- In pneumatic drives, motion is generated by means of compressed air. Well-established applications include pneumatic assembly tools for screws and nuts in vehicle garages and the transportation of lightweight goods on production lines.
- Electric drive technology works mostly with electric motors, which are being increasingly controlled electronically. Electric drives are used, for example, in high-precision machine tools or in printing presses.
- Mechanical drives can generate translational or rotatory motion or curves by means of either crank drives, transmissions with a fixed transmission ratio, stepless transmissions or cam gears.

Different requirements are placed on drive technology, depending on application and use.

Differences between the drive technologies arise in particular with regard to the energy supply, the distribution of the energy, the properties of the transmission medium used and the properties of the drive (type of motion) itself.

In most applications in industry and other technical fields, several drive technologies are represented and work in interaction. This allows the advantages of each technology to be exploited and their disadvantages to be offset in the overall system design.

Interaction of different drive technologies in modern stage technology (Krakow Opera)

1.2.2 Comparison of drive technologies

The following table contains a comparison of drive technologies according to their most important technical criteria.

Criterion	Hydraulics	Pneumatics	Electrics	Mechanics
Energy carrier	Hydraulic fluid	Air	Electrons	Motion, position, deformation
Energy transmission	Pipes, hoses, bores	Pipes, hoses, bores	Electrically conductive material	Shafts, rods, belts, chains, wheels etc.
Conversion from / into mechanical energy	Hydraulic pump, hydraulic motor, hydraulic cylinder	Compressor, pneumatic cylinder, pneumatic motor	Generator, magnet, electric motor	_
Most important characteristics	Pressure p, flow q _V	Pressure <i>p</i> , flow <i>q</i> _v	Voltage <i>U</i> , electric current <i>I</i>	Force F, Torque M, Velocity v, Speed n
Storage	Bladder-type accumulator, piston-type accumulator, diaphragm- type accumulator	Compressed air reservoir	Capacitor, battery, accumulator	Weight
Power density	Very good (high working pressures)	Good (limited by max. working pressure)	Not very good (power-weight ratio of electric motors approx. 10 times higher than that of hydraulic motors)	Good (if energy conversion is not necessary; limitations if high demands are placed on controllability)
Efficiency	Dependent on leakage and friction during energy conversion; losses during valve control (open and closed loop)	Dependent on leakage and friction during energy conversion; losses during valve control (open and closed loop)	Dependent on availability of electricity as primary energy source	Dependent on size of frictional losses
Generation of linear motion	Very easy (by means of cylinders; start-up and reversal of motion at full load possible)	Very easy (by means of cylinders)	Not very easy (by means of linear electric motor, threaded spindle etc.)	Simple (via crank drive, spindle etc.)
Generation of rotational motion	Easy (by means of hydraulic motor)	Easy (by means of compressed air motor)	Very easy (by means rotary electric motor)	Very easy (by means of transmission)
Generation of curves	Not very good	Not very good	Not very good	Very good for certain applications (bending technology)
Path accuracy	Very good (fluid is hardy compressible)	Not very good (air is compressible)	Varies: (not very good with asynchronous motors very good with synchronous and stepping motors)	Very good (by means of form and force fit)
Controllability (open and closed loop), signal processing	Very good (by means of valves and variable displacement pumps; use of servo valves in control technology; further improvements by combining with electric systems)	Very good (by means of valves)	Very good (by means of switches, relays, semiconductors, variable speed motors, variable resistors etc.)	Good (by means of transmissions, lever systems etc.)

Technical criteria of various drive technologies

1.2.3 Differences in energy supply and conversion

The following overview illustrates the various methods and components for energy supply and energy conversion of drive technologies, divided into stationary and mobile applications.

Drive technology	Operation	Energy supply	Energy conversion	Control	Generation of motion	
Hydraulics	stationary	Mains	Electric motor + hydraulic pump	Hydraulic valve, variable displacement pumps, variable-speed	Hydraulic motor, hydraulic cylinder	
	mobile	Fuel	Combustion engine and hydraulic pump or diesel-electric drive ¹⁾ and hydraulic pump	pump drives or variable displacement motors, meter-out control		
Pneumatics	stationary	Mains	Electric motor and compressor	Pneumatic valve	Pneumatic motor,	
	mobile	Fuel	Combustion engine and compressor or diesel-electric drive ¹⁾ and compressor	-	pneumatic cylinder	
Electrics	stationary	Mains				
	mobile	Fuel	Generator, combustion engine	Converter,		
		Fuel cell		switch, relay	Electric motor	
		Accumulator				
Mechanics	stationary	Mains and electric motor	Transmission or speed adjustment	Steplessly adjustable transmission (by means	Crank drives, transmission with	
	mobile	Fuel	Combustion engine	of centrifugal force or lever)	fixed or stepless transmission ratio, cam gears	

 $^{1)}\hdots$... diesel-electric drive consisting of diesel engine, generator and electric motor

Energy supply and energy conversion of drive technologies

1.2.4 Differences in energy distribution

Depending on the drive technology and the transmission medium used, energy distribution is determined using the following criteria:

- Range of energy transmission
- Flow velocity of the medium
- Propagation rate of waves in the medium

An economically viable energy transmission distance is limited by transmission losses which depend on the flow of the medium.

Drive technology	Transmission medium	Range of energy transmission	Flow velocity	Wave propagation velocity
Hydraulics	Hydraulic fluid	< 100 m	2 to 15 m/s	Approx. 1.5 - 2 km/s
Pneumatics	Compressed air	< 1000 m	10 to 50 m/s	Approx. 0.34 km/s
Electrics	Electric charge	< 1000 km	0.0007 m/s (electron velocity)	Approx. 300,000 km/s (in vacuum)
Mechanics	Mechanical components	Limited by mechanical stiffness		

Transmission characteristics of drive technologies

1.2.5 Properties of the transmission medium

Hydraulic fluid, compressed air, electric charge and mechanical components are transmission media whose properties influence the possibilities of energy storage, velocity of energy removal and environmental compatibility of the relevant drive technology.

Energy storage

Depending on the different drive technologies, energy is stored in different ways:

► Hydraulics

In hydraulics, the energy storage effect is minimal due to the low compressibility of the hydraulic fluid when compared with the compressibility of gases. Energy is stored using gas, usually nitrogen, as a compression medium. Due to the high system pressure, high amounts of energy are stored. This requires special safety-related measures.

Pneumatics

Air is used as a compression medium to store pneumatic energy. Besides special pressure vessels, the entire system constitutes an energy store. For safety reasons, the system pressure must therefore be kept relatively low. The pressure range in pneumatic systems lies between 4 and 6 bar.

Electrics

Electric energy storage is associated with high energy losses. As a general rule, coils and capacitors are suitable storage media. With capacitors, the energy loss can, however, be controlled more easily than with coils. Apart from capacitors, batteries and accumulators in particular are used to store energy in electric drive technologies.

Mechanics

Mechanical energy is stored by means of spindle drives (potential energy) and braking energy by means of flywheels (kinetic energy). This enables connecting of energy during acceleration processes. Limited amounts of energy can be stored through the use of engineered springs.

Velocity of energy removal

Energy stored in hydraulic, pneumatic and mechanical accumulators can be retrieved very quickly. Capacitors can also quickly release energy. Batteries and accumulators can store considerably more energy, though they only release it slowly.

Environmental compatibility

The drive technologies differ considerably in terms of their environmental compatibility due to the transmission medium used in each case (hydraulic fluid, compressed air, electrical charge, ...):

► Hydraulics

In hydraulic drives, undesired leakage of hydraulic fluids from the system (external leakage) constitutes a potential hazard for the environment. This hazard can be largely excluded by using biodegradable fluids or water. Collection of leaked fluids and proper disposal of used hydraulic fluids must be ensured.

Pneumatics

Pneumatic drives in modern systems (oil-free air) are very environmentally compatible, as compressed air can be directly discharged into the environment without filtration. Return of the transmission medium to a tank, as is the case with hydraulic drives, is not necessary here.

Electrics

In electric drives, electro-magnetic radiation must be taken into account and suitable countermeasures may need to be taken.

► Mechanics

Mechanical drives are very environmentally friendly in fault-free operation as there is no impact on the environment (no exhaust air or external leakage of components).

1.2.6 Properties of drive technologies

Drive technologies differ in the conditions required and options available to generate motion. Criteria for comparison preferably include motion type (rotary, linear), structural design (direct drive, used in transmission), force density, control behavior, accuracy, efficiency and safety aspects.

The following findings are based on the comparison of application characteristics of drive technologies:

- Hydraulic and pneumatic drives are particularly suitable for linear and rotatory motion that can be easily generated by hydraulic cylinders or motors. Electric drives have a complex structure and are predominantly built to generate rotational motion. Depending on their design, mechanical drives are suitable for both linear and rotary motion as well as for producing predefined curves.
- In comparison to electric drives, the volume-related power density of hydraulic drives is much larger.
 In contrast, the power density of pneumatic drives is significantly lower.
- Hydraulic and pneumatic drives are used both as direct drives as well as with mechanical transmissions. Electric drives often use a transmission to adjust torque and speed. With electric drives, integration of the motor into the machine construction is only economically efficient if the highest demands are placed on dynamics and stiffness.
- The achievable torques and forces of hydraulic and electric drives are considerably larger than those in pneumatics. For generation of identical forces, electric drives need to be considerably larger than hydraulic drives.

- Electric motors need about three times the rated current to generate torque from standstill. This results in considerable heating of the electric motor, making additional cooling necessary.
- Electric and mechanical drives offer a high degree of efficiency. The efficiency of hydraulic and pneumatic drives is lower as there are additional losses due to flow losses and leakage. Moreover, in pneumatics, efficiency is considerably reduced by the heat generated in the compressor that is dissipated into the environment.
- In hydraulic and pneumatic drives, overload protection can be easily achieved by means of overload safety valves (pressure relief valves).
 In mechanical drives overload protection can also be achieved without any problem by predetermined breaking points. In electric drives, overload protection is more complicated, as it is difficult to dissipate resulting losses in the form of heat.
- By using isolation valves in hydraulic and pneumatic drives, it is easy to stop motion in case of emergency. Electric drives offer a quick emergency stop by disconnecting the energy supply. Additional braking measures should be provided to prevent the electric motor continuing to run uncontrolled.
- Pneumatic drives can be used in explosive areas with relatively low effort, provided the air does not contain any oil. In hydraulic systems, the use of flame-resistant hydraulic fluids is essential. When using electrically controlled valves, the components must be designed in a way which is intrinsically safe or explosion-proof. Electric drives, however, must always be encapsulated in pressure-tight housings. In mechanical drives, suitable materials must be used. For instance, use of aluminum is prohibited in mining operations (applies to all drive technologies).

1.2.7 Conclusion

Comparison of individual drive technologies leads to the following conclusions:

Hydraulics

Hydraulic drives offer the advantage of generating high forces yet with a very compact design. A disadvantage of this drive technology is the effort required to prevent hydraulic fluid from escaping and entering the environment.

Pneumatics

Pneumatic drives can generally be used if fast motion and little force are required. Further advantages include comparatively low capital costs and good environmental compatibility. The relatively high noise development is a disadvantage of this technology.

Electrics

Electric drives feature high control dynamics and flexibility. On the other hand, capital costs are comparatively high.

Mechanics

Mechanical drives are straightforward to construct and are easily able to generate linear and rotational motion. However, one disadvantage is the less effective controllability.

By combining various drive technologies,

e.g. the combination of hydraulics and electrical engineering in variable-speed pump drives (Sytronix), the advantages of the respective technology can be optimally utilized and the disadvantages compensated as required.

1.3 Graphic symbols

1.3.1 Purpose

In hydraulics, graphical symbols (also referred to as switching symbols) are used for the abstract illustration of fluid power components and their functions, as well as to explain hydraulic circuit systems. Graphic symbols consist of one or more basic element(s) and generally of one or more functional symbol(s) in accordance with a specific system. They are designed in such a way that the function of the components or circuits illustrated can be quickly and easily understood.

Structural details of components are not taken into account in the symbolic illustration. Graphic symbols are mainly used in circuit diagrams, product catalogs and operating instructions. They are an important aid in project planning, assembly, commissioning, inspection, troubleshooting and maintenance of hydraulic systems.

1.3.2 Graphic symbols according to DIN ISO 1219

Scope and standard

Graphic symbols for fluid technology are used worldwide and are defined in DIN ISO 1219 and standardized in an internationally binding manner.

The exclusive sale of standard sheets in Germany is carried out by:

▶ Beuth Verlag GmbH, 10772 Berlin

The following list shows examples of graphic symbols according to the standard DIN ISO 1219 (Part1: "Graphic symbols for conventional use and data-processing applications"). This list serves as working aid for assignment of graphic symbols and reading or creating of hydraulic circuit diagrams.

1.3.3 Graphic symbols according to DIN ISO 1219 – Pumps, motors, cylinders, accessories

Element description	Symbol	Element description	Symbol
Energy source, hydraulic	>	Energy source, pneumatic	
Drive unit (except for electric motor)	M	Electric motor	M
Main line (rigid) Control or leakage oil line		Hose line (flexible)	
Line crossing (lines not connected)		Line connection	
Tank		Tank with line	ப
Quick-release coupling without non-return valve to be opened mechanically, coupled/uncoupled	$\begin{array}{c} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \end{array}$	Quick-release coupling with non-return valve to be opened mechanically, coupled/uncoupled	
Hydraulic pump, general		Hydraulic motor, general	\bigcirc
Fixed displacement pump with: • 1 flow direction • 1 direction of rotation		Fixed displacement pump/motor with: • 1 flow direction • 1 direction of rotation	
Variable displacement pump with: • 2 flow directions • 1 direction of rotation • drain port		Fixed displacement motor with: • 2 flow directions • 2 directions of rotation	
Variable displacement pump with hydraulic servo adjustment and: • 1 flow direction • 1 direction of rotation • drain port		Variable displacement pump/motor with: • 2 flow directions • 2 directions of rotation • drain port	

Element description	Symbol	Element description	Symbol
Variable displacement pump with pressure controller (pilot-operated) and: • 1 direction of rotation • drain port		Variable displacement pump with combined pressure/flow controller and: • 1 direction of rotation • drain port	
Hydraulic swivel motor		Compact hydro transmission	
Single-acting hydraulic cylinder, with piston rod on one side, return stroke by spring force, spring chamber with port		Double-acting hydraulic cylinder with piston rod on one side	
Single-acting telescopic hydraulic cylinder		Double-acting telescopic hydraulic cylinder	
Filters, general		Breathing filter tank	
Separator		Filter with separator	
Filter with bypass valve		Filter with visual clogging indicator (pressure difference-based)	
Accumulator, general		Piston-type accumulator	
Bladder-type accumulator		Diaphragm-type accumulator	

Element description	Symbol	Element description	Symbol
Heater		Cooler with cooling fluid	
Thermostat	\rightarrow	Pressure sensor, output signal analog	-
Pressure measuring instrument (manometer)	\sim	Pressure differential gauge	\bigtriangledown
Fluid level indicator (sight glass)		Thermometer	
Flow indicator	\mathbf{Q}	Flow meter	\Diamond
Tachometer	=	Torque measuring instrument	
Pressure switch, electro-mechanical, adjustable	- <u>-</u> W	Pressure switch, electronically adjustable, output signal switching	
Accumulator with accumulator shut-off block Accumulator shut-off block with: • system-shut-off valve • pressure relief valve (safety valve) • manual relief • pressure measuring instrument (manometer) Selection of symbols from the fields of pumps, motors, cylinders, a		ccumulators and accessories	·

1.3.4 Graphic symbols according to DIN ISO 1219 – Hydraulic valves

Element description	Symbol	Element description	Symbol
Hydraulic operation (single-stage)		Pneumatic operation (single-stage)	
Hydraulic operation (two-stage)		Operation by means of solenoid coil with one winding	☑
Operation by means of solenoid coil with two counteracting windings		Operation by means of solenoid coil with two counteracting windings, continuously adjustable	
Electrical operation (solenoid coil with one winding), hydraulic pilot control with external pilot oil supply		Electrical operation (solenoid coil with two counteracting windings, continuously adjustable), two-stage hydraulic pilot control with external pilot oil supply	
Operation by pushbutton	E	Operation by pedal	
Operation by fulcrum		Operation by lever	
Operation by plunger		Operation by plunger with adjustable stroke limitation	4
Operation by roller plunger	<u></u>	Operation by spring force	W
Operation by hydraulic pressurization (by the use of pilot oil) or pressure relief, directly acting on the operating element		Operation by hydraulic pressurization (by the use of pilot oil) or pressure relief by means of different-sized, opposing control areas	[]p
Two operations acting in parallel		Mechanical feedback	

Element description	Symbol	Element description	Symbol
External pilot oil line		Internal pilot oil channel	
Throttle valve, adjustable){~	Non-return valve	¢
Non-return valve with spring	₩¢	Pilot-operated double non-return valve with spring, valve is opened by pilot pressure	
Shut-off valve	¥	Shuttle valve (OR function)	
Throttle/non-return valve, adjustable) Hero	Double non-return valve, pilot-operated	
2-way flow control valve, permanently adjusted, with bypass non-return valve		3-way flow control valve, adjustable	
Flow divider	>< ><	Flow totalizer	
Pressure control valve and directional control valve installation kit, poppet design	B A	Throttle valve, operation with roller plunger, spring return	© _ ↓↓
2/2 directional control valve, normally open, solenoid operation, spring return	⊡‡ † ₩	2/2 proportional directional control valve, normally closed, solenoid operation, spring return	t <mark>t ∏ ±</mark> w
3/2 directional control valve, normally closed, solenoid operation, spring return		3/2 directional poppet valve, normally closed, solenoid operation, spring return	

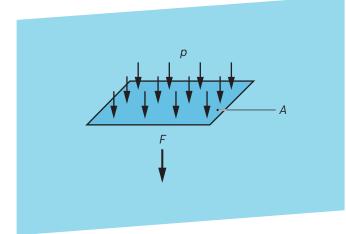
Element description	Symbol	Element description	Symbol
4/2 directional control valve, solenoid operation, spring return	r IIX	4/3 directional control valve, hydraulic operation, spring centering	╶┝┙╧╤╎╧┥╽╴┙
4/3 directional control valve, direct solenoid operation, spring centering of center position		4/3 directional control valve, pilot-operated, electro-hydraulic operation, spring centering of center position, external pilot oil supply and pilot oil return	
4/3 directional control valve, two-stage, electro-hydraulic operation, pressure centering of center position, external pilot oil return		4/3 directional control valve, two-stage, electro-hydraulic operation, spring centering of center position, main control spool with additional pressure centering, with emergency operation, external pilot oil return	
4/3 directional control valve, pilot-operated, electro-hydraulic operation, spring centering of center position, with emergency operation, external pilot oil return		4/3 directional control valve, pilot-operated, electrical operation of the pilot control stage and hydraulic operation of the main stage, without emergency operation, spring centering of center position, external pilot oil supply and pilot oil return	┎┲╞┙╱┙
4/3 proportional directional control valve, direct solenoid operation, spring centering of center position	┉ <u>╼</u> ╪╪┲ द	4/3 proportional directional control valve, pilot-operated, with position control of main and pilot control stages, with integrated electronics	
4/3 proportional directional control valve, pilot-operated, with actuating solenoid, with position control of the main and pilot control stages, with integrated electronics		4/3-way servo valve, pilot-operated, pilot control stage with electrical operation, with mechanical feedback of the control spool position, with integrated electronics	
Pressure relief valve, direct-operated, internal pilot oil supply		2-way pressure reducing valve, direct-operated, adjustable, internal pilot oil supply, external pilot oil return	
Proportional pressure relief valve, direct-operated, solenoid acts via spring on valve poppet, internal pilot oil supply		2-way pressure reducing valve, pilot-operated, internal pilot oil supply, external pilot oil return	
Pressure relief valve, pilot-operated, internal pilot oil supply and return		3-way pressure reducing valve, direct-operated, internal pilot oil supply, external pilot oil return	

2 Basic principles of physics

2.1 Basic principles of hydraulics

2.1.1 Hydrostatics -Pascal's Law

Short description


Hydrostatics describe the state of resting fluids. In this respect, Pascal's Law is of major significance. This law of physics describes the effect of pressure on resting fluids – the pressure propagates evenly in all directions.

Pascal's Law

Definition of pressure

Pressure is a basic physical parameter in hydrostatics. Pressure p is defined as the vertically acting force F on the area A.

$$p = \frac{F}{A} \Rightarrow F = p \cdot A$$

Pressure p on area A creates force F

Physical measurement units of pressure

Physical unit of pressure as per definition

According to the International System of Units (SI), the physical unit of pressure is the **Pascal (Pa)**:

$$1 \operatorname{Pa} = 1 \frac{\operatorname{N}}{\operatorname{m}^2}$$

In hydraulics, a pressure of 1 Pa is an extremely low and impractical value. Relevant specified pressures could start at approx. 10000 Pa and could reach values with up to seven digits.

Therefore, to avoid massive numerical values, the unit megapascal (MPa) is used:

$$1 \text{ MPa} = 10^6 \text{ Pa} = 1 \frac{\text{N}}{\text{mm}^2}$$

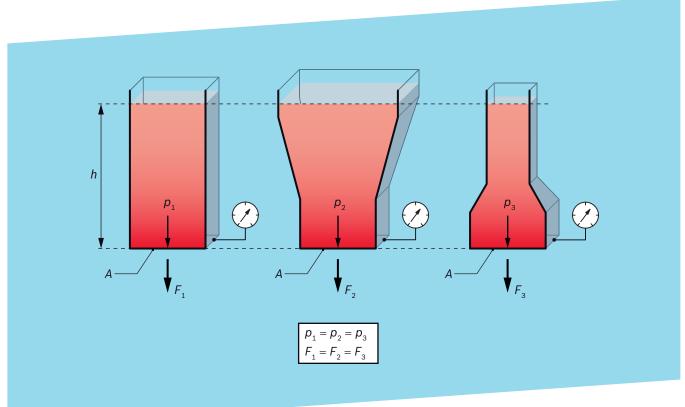
Physical unit of pressure in practice

In hydraulics, according to the EU directive, the unit "bar" (bar) is also permitted in addition to the SI unit and is widely used in practice:

- 1 bar = 10 N/cm²
- ▶ 1 bar = 10⁵ Pa
- 1 bar = 0.1 MPa

In the US, however, the unit **pound-force per square inch (psi)** is commonly used:

1 psi = 6894.757293168 Pa


For practical reasons, the following conversion factors are applied:

- ▶ 1 bar = 14.49 psi
- 1 psi = 0.069 bar

Hydrostatic pressure due to gravity

If it is only gravity which acts on a fluid, then the pressure in it will depend on the height of the fluid column and the density of the fluid. This pressure is referred to as gravitational pressure.

In water, the increase in the hydrostatic pressure with the height of the water column amounts to approx. 1 bar per 10 m. In air, the pressure of the earth's entire atmosphere at sea level is approx. 1 bar. With a series of vessels of different shape, it can be observed that, provided the same fluid is used, the pressure at the bottom will only depend on the height of the fluid column and not on the shape of the vessel or the fluid quantity. This phenomenon is referred to as a **hydrostatic paradox**.

Hydrostatic paradox (for the same area A)

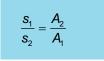
The following relationship is derived from this:

- *p* Hydrostatic pressure
- ho Specific density of the fluid
- g Acceleration due to gravity (9.81 m/s²)
 h Height of the fluid column
- *h* Height of the fluid column

The hydrostatic pressure due to gravity as described by **Pascal's Law**:

The effect of a force on a resting fluid propagates in all directions within the fluid. Without external forces, the level of pressure in the fluid corresponds to the weight, referred to its effective area. The pressure always acts vertically on the tank boundary surfaces.

Path transmission (hydraulic lever rule)


For incompressible fluids, the following applies: In a closed system, the total volume of the fluid does not change.

As shown in the graph "Force and path transmission" (on page 27), the volume of hydraulic fluid displaced by one piston must push against and move the other piston (displacement principle).

The change in partial volumes is the same in both cylinder spaces within the system and is determined by the following formula:

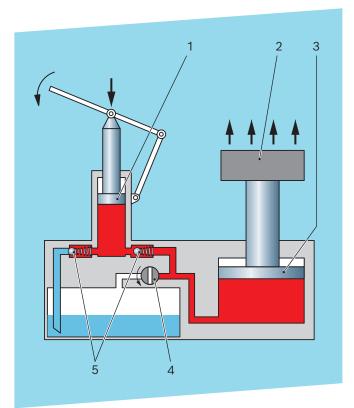
$$\Delta V = A_1 \cdot s_1 = A_2 \cdot s_2$$

The paths are inversely proportional, as with the associated piston areas.

Therefore, the piston with the smaller piston area performs a larger stroke than the piston with the larger piston area:

$$\boldsymbol{S}_1 = \boldsymbol{S}_2 \cdot \frac{\boldsymbol{A}_2}{\boldsymbol{A}_1}$$

As with mechanics, this correlation applies as the hydraulic lever rule. "Path transmission" is derived from this correlation.


Application of force and path transmission

Force and path transmission are used, for example, in hydraulic lifting platforms for lifting heavy loads. The cylinder of the hand pump is characterized by a large stroke with a small piston area. This means that only a low force is required to deliver the necessary volume of hydraulic fluid to the working cylinder with many strokes.

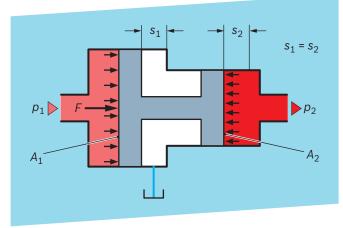
At the working piston with a larger area, there is transmission into a large force at the lifting platform with a shorter path.

The following figure is intended to illustrate the application of force and path transmission to a hydraulic lift. Non-return valves prevent the hydraulic

fluid from flowing back into the hand pump and thus prevent the working piston from lowering. To lower the load on the lifting platform, a blocking element is provided (here a rotary spool), which controls the discharge of the hydraulic fluid into the tank.

- 1 Cylinder piston of hand pump
- 2 Lifting platform
- 3 Cylinder piston of lifting platform
- 4 Rotary spool
- 5 Non-return valves

Principle of a hydraulic lifting platform (application of force and path transmission)


Hydraulic jack (practical example of application of force and path transmission)

Pressure intensification

The principle of pressure intensification is the conversion of an input or primary pressure to a generally higher outlet pressure or secondary pressure.

At mechanical coupling of pressurized areas, the pressure is intensified proportionally to these areas.

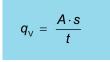
The prerequisite is two firmly connected piston areas of different sizes in a closed hydraulic system.

Principle of pressure intensification (intensifier)

Pressure p_1 acts on the large piston and generates force F that generates pressure p_2 by means of the small piston.

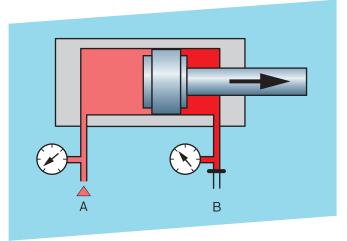
$$p_1 \cdot A_1 = F = p_2 \cdot A_2$$

Therefore, the pressure is inversely proportional to the associated piston areas.


"Pressure intensification" is derived from this correlation.

Application of pressure intensification

A typical application example of pressure intensification uses a component known as a pressure intensifier (see figure above "Principle of pressure intensifiers" and section "Pressure intensifiers" on page 342). The pressure intensifier increases an existing pressure. The primary pressure at the input side is intensified to a higher secondary pressure at the output side at an inverse ratio of the effective piston area. The flows at the primary and secondary sides behave as the piston areas do.



The flow is calculated according to the following formula.

Due to the mechanical separation of the two areas of the pressure intensifier, different pressure media (e.g. hydraulic oil) can be used for the primary area and for the secondary area (e.g. water).

Hazard due to pressure intensification

Pressure intensification in double-acting hydraulic cylinder

If the hydraulic cylinder is to be extended by pressurizing port A, but port B is closed, this would cause a pressure intensification between the cylinder chambers (corresponding to the ratio of the areas of the piston base side and the piston rod side). In extreme cases, this pressure increase can cause the cylinder pipe and associated components to burst.

└<u>╯</u> Notice:

With regard to planning and dimensioning of hydraulic systems, it is important to consider the possible pressure intensification and pressure increase by hydraulic cylinders.

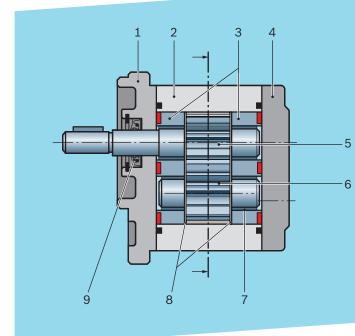
3.2 Hydraulic pumps

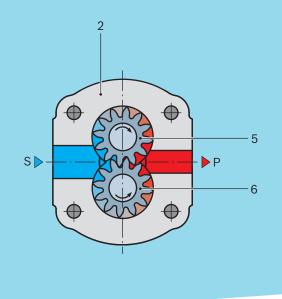
3.2.1 External gear pumps

Short description

External gear pumps are displacement machines in which the displacement chambers are made up gears with external gearing.

In the housing bores of external gear pumps, two gears engage, one of which is driven (e.g. by means of an electric motor). This driven gear drives the second gear in the opposite direction. The hydraulic fluid is delivered in the tooth clearances.


Characteristics


External gear pumps are fixed displacement pumps. They are characterized by a compact design and high power density. They have good emergency running properties, so that momentarily insufficient lubrication, e.g. during start-up, does not cause damage to the pump. Disadvantages are leakage and frictional losses as well as considerable noise development, which occur to varying degrees depending on the design and use of the pump.

External gear pumps consist of only a few components. The pump housing can be manufactured from an extruded aluminum profile with low manufacturing costs. External gear pumps can be used in a wide speed range and have only low requirements on the viscosity of the hydraulic fluid used. This results in numerous possible applications, particularly in mobile hydraulics (tractors and forklifts) and industrial applications.

Design

The figure illustrates the general design of an external gear pump in longitudinal and cross-section.

- 1 Flange (front cover)
- 2 Housing
- 3 Bearing blocks
- 4 Housing cover (end cover)
- 5 Drive shaft with driving gear
- 6 Driven gear

Longitudinal and cross-section of an external gear pump

- 7 Bearing
- 8 Sealing surface between bearing blocks and gears
- 9 Shaft seal ring
- P Pressure port
- S Suction port

3.3 Hydraulic valves

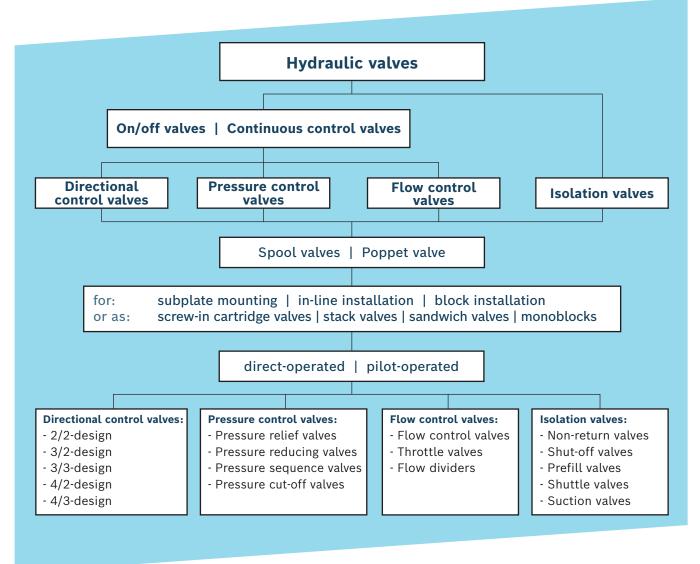
3.3.1 Overview of hydraulic valves

Short description

Hydraulic valves are components for open and closed-loop control of the energy flow in hydraulic systems. Depending on their design, they influence start, stop and volume of the flow, and thus also the direction of motion, the velocity of hydraulic actuators and the pressure level in hydraulic systems.

Classification of hydraulic valves

The main distinction with this line of components is made between the signal behavior and mode of operation of the valve:


On/off valves

A change in the input signal results directly in an abrupt change of the hydraulic output signal (binary behavior; also referred to as "black and white valves"), without assuming an intermediate position.

Continuous control valves

A variable input signal is converted into a continuous and proportionally adjustable hydraulic output signal. With continuous control valves, a basic distinction is made between proportional control and servo valves.

Further subdivision of hydraulic valves within these two main groups is virtually identical.

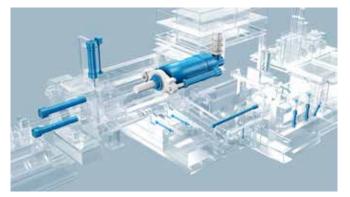
General criteria for classification of hydraulic valves

3.4 Hydraulic cylinders

3.4.1 Basic principles of hydraulic cylinders

Short description

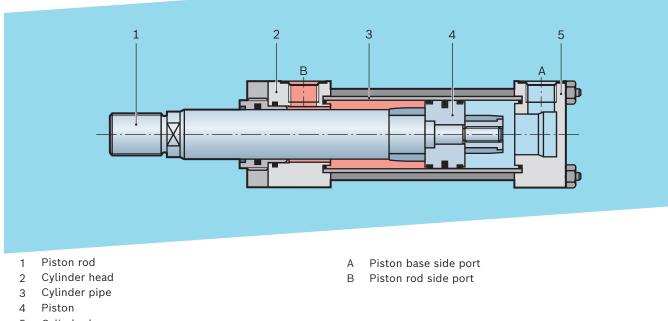
Hydraulic cylinders are components for energy conversion that work according to the displacement principle. They convert the flow directed into the cylinder chamber into translational, i.e. linear motion.



Use of hydraulic cylinders in a wheel loader

Characteristics

Hydraulic cylinders are able to transmit large forces along a route limited by their effective length. Depending on their construction type, hydraulic cylinders are able to transmit forces either in one or two directions.


In relation to their frame size, hydraulic cylinders are very powerful and are therefore used in all fields of industrial and mobile hydraulics.

Use of hydraulic cylinders in an extrusion press

Design

The figure illustrates a double-acting hydraulic cylinder in tie rod design in longitudinal section.

5 Cylinder base

Longitudinal section of a double-acting hydraulic cylinder in tie rod design

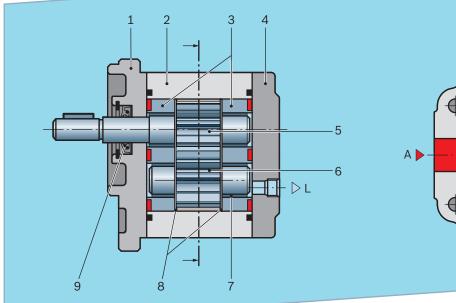
3.5 Hydraulic motors

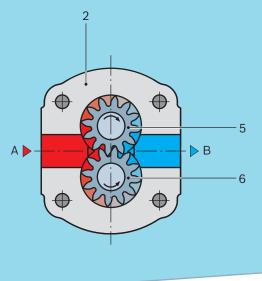
3.5.1 External gear motors

Short description

External gear motors are displacement machines in which the displacement chambers are made up of gears with external gearing. High and low-pressure range are separated by the contact of the meshing gears.

Characteristics


External gear motors are fast-running fixed displacement motors. They are characterized by a compact design and high power density. These motors consist of few components and are compact in design. The housing can be manufactured from an extruded aluminum profile with low manufacturing costs. External gear motors can be used across a wide speed range and operated with hydraulic fluids within a large viscosity range. This results in numerous possible applications, particularly in mobile hydraulics and industrial applications.


Application examples of external gear motors are as follows:

- Construction machines (road rollers and paving machinery)
- Road vehicles (buses and trucks)
- Agriculture and forestry (combined harvesters and forestry machinery)
- Plant construction (fan drives)

Design

The figure illustrates the general design of an external gear motor in longitudinal and cross-section.

- 1 Flange (front cover)
- 2 Housing
- 3 Bearing blocks
- 4 Housing cover (end cover)
- 5 Output shaft with gear
- 6 Gear

Longitudinal and cross-section of an external gear motor

- 7 Bearing
- 8 Sealing surface between bearing blocks and gears
- 9 Shaft seal ring
- A High-pressure port
- B Low-pressure port
- L Drain port

4 Basic circuits of hydraulics

4.1 Circuit diagrams in hydraulics

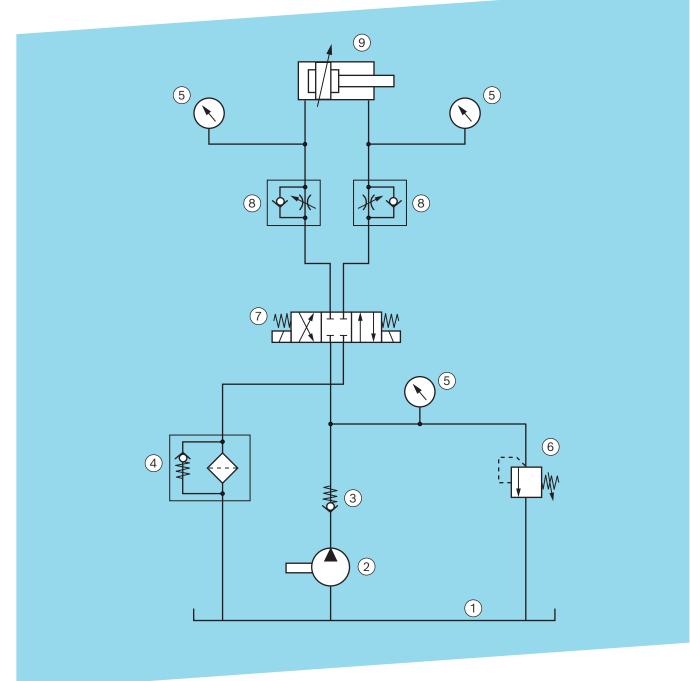
4.1.1 Graphical illustration of hydraulic circuits

Hydraulic circuit diagrams

Circuit diagrams are created to graphically illustrate the components and their functions, their connections in the hydraulic system, and their interaction in the hydraulic system.

Circuit diagrams are aids to support understanding of the design and the description of hydraulic systems. They are also a suitable means of avoiding ambiguities and errors during the planning phase, production, assembly and maintenance of the hydraulic system by means of a standardized illustration of the hydraulic conditions. Basic elements of hydraulic circuit diagrams are standardized graphic symbols of hydraulics according to ISO 1219 (see chapter "Graphic symbols" from page 18).

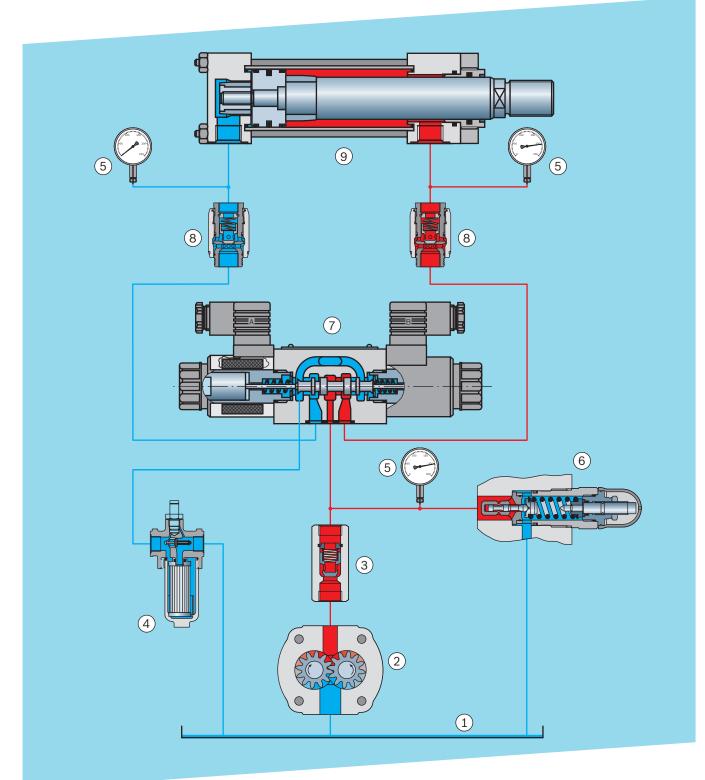
Graphic symbols of hydraulics do not provide information about the design structure of the components. They include abstractly represented functional units such as drive motors, hydraulic pumps, hydraulic valves, hydraulic cylinders or hydraulic motors, as well as accessory components or assemblies.


The illustration of the line links shows the connections between the individual components and assemblies. Marking of components, compact assemblies and connection designations facilitates the assignment of the elements of the circuit diagram to the parts lists and conditions of the real hydraulic assembly. Furthermore, it is possible to enter required physical characteristic values at relevant positions of the circuit diagram.

Reading and understanding a circuit diagram as a basis for working on hydraulic systems

Circuit diagram/circuit schematics

The following figure illustrates the **circuit diagram** of a hydraulic system with supply (hydraulic pump), components for control, safety and display as well as the hydraulic actuator (hydraulic cylinder).



- 1 Tank
- 2 Hydraulic pump (here fixed displacement pump)
- 3 Non-return valve
- 4 Return filter

- 5 Manometer
- 6 Pressure relief valve
- 7 Directional control valve
- 8 Throttle/non-return valve
- 9 Hydraulic cylinder

Circuit diagram of a hydraulic circuit with graphical symbols according to DIN ISO 1219

The following figure illustrates the components of a hydraulic system in **circuit schematics**. These circuit schematics were derived from the illustrated circuit diagram. The abstract graphic symbols have been replaced by cross sections of the components. This form of illustration of a hydraulic circuit, which is mainly used in basic and advanced training, clearly shows the design and interaction of individual assemblies, components and parts.

- 1 Tank
- 2 Hydraulic pump (here external gear pump)
- 3 Non-return valve
- 4 Return filter

5 Manometer

- 6 Pressure relief valve
- 7 Directional control valve
- 8 Throttle/non-return valve
- 9 Hydraulic cylinder

Associated circuit schematics (with cross sections) of the hydraulic circuit

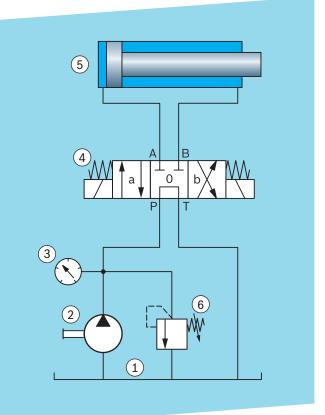
4.2 Open and closed-loop control with valves

4.2.1 Open-loop control with directional control valves

Short description

Hydraulic directional control valves are components manipulating start, stop, and flow direction of a hydraulic fluid. They establish line connections by opening, blocking or changing one or more flow paths. Depending on the application and task, different variants of control systems with directional control valves are realized, which differ in terms of design and function.

Design


A control system with directional control valves essentially consists of the following main components:

- A hydraulic pump delivers the flow.
- A directional control valve controlling start, stop and the direction of flow.
- An actuator, here a hydraulic cylinder, performs work with the aid of the flow.
- A pressure relief valve limits the working pressure of the system.

Continuous directional control valves with integrated electronics for use in industrial hydraulics

The figure illustrates the circuit diagram for a cylinder control with an electrically operated 4/3 directional control valve in the center position.

1 Tank

3

- 2 Hydraulic pump
- 4 4/3 directional control valve
- 5 Hydraulic cylinder

Manometer 6 Pressure relief valve der control with electrically operated 4/3 direction

Cylinder control with electrically operated 4/3 directional control valve

In the symbol of a directional control valve shown in the circuit diagram, ports P and T are connected to each other in center position (zero position). This is also called neutral circulation, and such a directional control valve is called an unloading valve. The advantage is that the hydraulic pump in this switching position of the directional control valve saves energy, since it only has to build up the low pressure to overcome the valve and line resistances.

5 Hydraulic power units and systems

5.1 Hydraulic drive units

5.1.1 Drive units in hydraulics

Short description

Hydraulic power units are independent assemblies of components for controlled provision of hydraulic energy. The system is driven either by an electric motor or a combustion engine.

Requirements

Hydraulic power units must be adjusted to the requirements and specifications of different hydraulic systems. For example, different specification profiles result from flow requirements, working pressure, environmental conditions or transport and installation options. Constant focus is placed on low noise level and optimum energy efficiency. Use of standard components and modular assemblies in hydraulic power units ensures better handling of the diversity of variants resulting from the various requirements. Thanks to a modular design, it is possible to realize optimum structural solutions while taking into account economic aspects and ensuring a high degree of operational reliability, low noise emissions and energy consumption as well as ease of maintenance and high durability.

Fields of application

Typical application cases for hydraulic power units are stationary applications in general mechanical engineering (structural and hydraulic engineering, metallurgy), in the plastic-processing industry, in lifting and elevation units and in presses. Small power units with electric motors are used in mobile hydraulics, for example, for operation of tailgates of trucks or hydrostatic fan drives.

Large hydraulic power unit (with oil-air heat exchanger)

Index

Α

A	
Accessories	26
Accumulator. See "Hydraulic accumulat	tors
Accumulator charging valves	17
Accumulator circuits	35
for compensation of volume expansion	35
for shock and vibration damping	350
for the provision of flow	35
Accumulator shut-off blocks	270
Annular gear motor - gerotor principle	244
Annular gear motors - orbit principle	240
Annular gear pumps	104
Applications in industrial hydraulics	1(
Applications in mobile hydraulics	1:
Axial piston motors - bent axis design	23
Axial piston motors - swash plate design	228
Axial piston pumps – bent axis design	94
Axial piston pumps – swash plate design	89
В	
Basic circuits of hydraulics	29
Basic principles	
Basic principles of hydraulics	2
Basic principles of mechanics	40
Basic principles of mechanics	40
Basic principles of physics	2
Basic principles of hydraulics	2
Bent axis design	0.01
for axial piston motors for axial piston pumps	23: 94
Bernoulli, Principle of	30
Bernoulli's Principle	30
Bladder-type accumulator	27:
Block installation	12
Bourdon tube pressure switches	293
Bulk modulus	20.
	4
C	
Cavitation	4

4
4
4
4
4
4
6
6
6
6
7
29
29
29

	Clamping and drive modules	369
267	Closed-loop control with valves	300
ors"	Compact modules	370
71	Compensation of volume expansion	357
353	Components	59
357	Compressibility in the hydraulic system	41
356	Compressibility of fluids	40
353		40
276	Connection between hydraulic and mechanical quantities	57
244	Connection elements	57
246		250
04	for hoses for pipes	256 256
10	Connection technologies	250
	Overview	251
12	Requirements	251
232	Construction types of hydraulic cylinders	198
228	Control blocks	264
94	Control of actuators	204
89	in parallel operation	348
	with lower operating pressure	346
297	Control systems	0-0
	with directional control valves	300
25	with pressure switch	342
46	Cooler 281,	
46	Oil cooler, air-cooled	283
25	Oil cooler, water-cooled	284
25	Cylinder. See "Hydraulic cylind	lers"
	CytroBox	366
232	CytroPac	366
94	D	
30	Damping bearing	361
30		301
272	Damping by accumulator circuits	250
29	of mechanical shocks of pulsation and pressure shocks	356 356
292	with stabilization modules	356
40	Definition of hydraulics	9
	Diaphragm-type accumulator	272
40	Differential cylinder	205
42	Differential pressure manometer	203
43 43	-	294
43 43	Digital manometers	
43	Directional control valves	136
43	Control with directional control valves Overlap	300 146
67	Switching behavior	140
69	Switching time	143
68	Displacement	61
67	Displacement machines	64
71	Displacement principle	61
298		
07	Double-acting cylinder	212
297	Double-acting cylinder	213
297 298	Double-acting cylinder Drive modules Drive technologies	213 368 13

Comparison	
Energy distribution	
Energy supply and conversion	
Environmental compatibility	
Properties	
Transmission medium	
Drive units	359,

E

Efficiency	55
Energy and work	52
External gear motors	217
External gear pumps	75

F

-	
Filling level indicator	362
Filling level measurement	294
Filter.	See "Hydrofilter"
Filter efficiency	280
Filter intake capacity	280
Filter rating	280
Fine throttle valves (orifices)	183
Flange fittings	258
Flow	
Laminar flow	37
Turbulent flow	37
Flow control valves	185
for synchronous control	351
Flow dividers	352
Flow losses in hydraulic lines	39
Flow measurement	295
Flow measuring procedures	295
Force and path transmission	27
Force and torque	48
Force transmission	27
Friction factor	38

G

Gerotor principle for annular gear motors	244
Graphical symbols. See "Graphic sy	mbols"
Graphic symbols	18
н	
Heating (of a hydraulic power unit)	363
High-pressure filter	278
History of hydraulics	9
Hose lines	254
Hydraulic accumulators	267
Accumulator shut-off blocks	276
Bladder-type accumulator	272
Circuits	353
Diaphragm-type accumulator	272
Piston-type accumulator	273
Safety of hydraulic accumulators	275
Hydraulic circuit systems	316
Hydraulic cylinder end position damping	196

14	Hydraulic cylinders	191
15	Basic principles	191
15	Comparison of construction types	198
16	Double-acting hydraulic cylinders	194
17	End position damping	196
16	Mill type design	195
370	Mounting types	197
	Single-acting hydraulic cylinders Tie rod design	194 195
55	Hydraulic filters	277
52	High-pressure filter	278
217	Return filter	278
75	Suction filter	278
	Hydraulic fluids	59
362	Hydraulic fluid temperature measurement	296
294	Hydraulic motors	217
	Axial piston motors - bent axis design	232
ilter"	Axial piston motors - swash plate design	228
280	External gear motors	217
280	Internal gear motors	221
280	Radial piston motors with external support	241
183	Radial piston motors with internal support	237
258	Vane motors	224
	Hydraulic motors in comparison	250
37	Hydraulic power units	359
37	Hydraulic power units in comparison	371 75
185	Hydraulic pumps	75 104
351	Annular gear pumps Axial piston pumps – bent axis design	94
352	Axial piston pumps – swash plate design	89
39	External gear pumps	75
295	Internal gear pumps	81
295	Pump regulating systems	109
27	Radial piston pumps with internal support	99
48	Radial piston pump with external support	102
27	Screw pumps Vane pumps	106 83
38	Hydraulic pumps in comparison	121
	Hydraulic systems	359
244	Hydraulic training systems	374
ools"	Hydraulic valve designs	127
18	Block installation	127
	In-line installation	123
363	Monoblock	130
	Sandwich plate design	130
278	Stack valves	129
9	Subplate mounting	128
254	Hydraulic valves	125
267	Cavitation occurrence in hydraulic valves	45
276	Characteristics	131
272 353	Designs Operating elements	127 130
353 272	Operating elements Overview	125
273	Type designation	132
275	Types of operation	130
316	Valve operation	130
196	Hydrodynamics - Bernoulli's Principle	30
	Hydrostatic drives	316

Hydrostatics – Pascal's Law			25
1			
Individual power units			368
In-line installation			128
Internal gear motors			221
Internal gear pumps			81
ISO 1219 - Extract			22
J			. –
Jerk			47
Jerk limitation			48
L			
Laminar flow			37
Large power units			366
Low-noise compact power un	nits	_	007
Silent power units			367
Μ			
Manifolds			262
Manometer			286
Differential pressure manor Digital manometers	mete	er	287 294
Load capacity of manometer	ers		290
Manometer selector switch			288
Relative pressure manomet	er		286
Manometer selector switch			288
Measuring coupling.	See	"Measuring p	orts'
Measuring ports			258
Metering orifice. valve - Functionality"		See "Flow co	ntro
Mill type design (of hydraulid	c cyl	inders)	195
Minimess ports.	See	"Measuring p	orts'
Modular large power units			366
Modular standard power unit	ts		364
Modular standard small pow	er u	nits	365
Monoblock			130
Motor-pump group			361
Motors. S	See "	Hydraulic mo	tors'
Mounting types for hydraulic	: cyli	nders	197
Ν			
Non-return valves			172
Non-return valves, pilot-oper	ated	l	175
0			
Oil cooler, air-cooled			283
Oil cooler, water-cooled			284

Open-loop control with valves Operating behavior of directional

Operating elements of hydraulic valves Orbit principle for annular gear motors

control valves

Orifices.

Hydrostatic operating principles

Orifices in hydraulic lines

Overlap for directional control valves

		Р	
	368	Parallel connection of actuators	348
	128	Parallel operation without synchronization	350
	221	Pascal, Law of	25
	81	Pascal's Law	25
	22	Path transmission	28
		Pipe and hose lines	254
	47	Pipe flows	37
	48	Pipelines	254
		Piston-type accumulator	273
	37	Piston type pressure switches	292
	366	Poppet valves	128
er units –	000	Positioning process	47
	367	Power (physical)	54
		Power units	359
	262	"Predefined flow" operating principle	322
	286	"Predefined power" operating principle	338
anometer	280	"Predefined pressure difference"	
	294	operating principle	334
neters	290	"Predefined pressure" operating principle	329
itch	288	"Predefined speed" operating principle	335
meter	286	Prefill valves	178
ch	288	Preload valves	165
See "Measuring	-	Pressure and force-depending	220
	258	control systems	339
See "Flow c "	ontrol	Pressure compensator. See "Flow control valve - Function	ality"
aulic cylinders)	195	Pressure cut-off valves	168
See "Measuring	ports"	Pressure dependence of the hydraulic fluid	40
S	366	Pressure drop in pipe flows	38
units	364	Pressure indicators, analog. See "Manom	eter"
ower units	365	Pressure indicators, digital	294
	130	Pressure intensification	29
	361	Pressure intensifiers	342
See "Hydraulic m	otors"	Pressure limitation	339
ulic cylinders	197	Pressure medium	59
		Pressure reducing valves	156
	172	Pressure reduction	
perated	175	between directional control valve and actuator	346
		in the supply of directional control valves	347
	283	Pressure relief valves	148
	284	Pressure sensors. See "Pressure sen	
alves	300	Pressure sequence valves	162
ectional	143		, 342
draulic valves	143	Bourdon tube pressure switches for monitoring the filter function	292 345
ar gear motors	246	in accumulator charging control	345 345
See "Fine throttle v		in sequence control for pressure increase	342
	αινεδ	Piston type pressure switches	292

Pressure switch; electronic		
Pressure transducer		
Principle of conservation of momentum		
Pulsation absorber		
Pump regulating systems		
Imps. See "Hydraulic pumps		
Q		
Quick couplings	256	
R		
Radial piston motors with external support	241	
Radial piston motors with internal support	237	
Radial piston pumps with internal support		
Radial piston pump with external support		

Radial piston pump with external support		
Ram type cylinder		
Rapid traverse circuits		
Relative pressure manometer		
Return filter	278	
Reynolds Number	37	
S		
Sandwich plate design	130	
Screw-in cartridge valves		
Screw pumps		
Sensors for hydraulic fluid temperature		
measurement	296	
Sensors for pressure measurement.		
See "Pressure sens		
Sequence valves	164	
Servo cylinders	209	
Shuttle valves	174	
Silent power units	367	
Slip-in cartridge valves	129	
Spool valves	127	
Stabilization modules	356	
Stack valves	129	
Standard power units	364	
Standard small power units	365	
Subplate mounting	128	
Suction filter	278	
Supply systems (CytroPac, CytroBox)	366	
Swash plate design		
for axial piston motors	228	
for axial piston pumps	89	
Symbols. See "Graphic symbols"		
Synchronization control	0 = 4	
with flow control valves	351	
with flow divider	352	

Sytronix pump drives

2 т

232		
293	Tank.	See "Tank"
53	telescopic cylinder	201
361	Temperature dependence of the hydrau	lic fluid 40
109	Temperature measurement of hydraulic	
mps"	Threaded fittings	257
mp5		
	Throttle/non-return valves	183
256	Throttle valves	180
	for velocity control	304
241	Tie rod design (of hydraulic cylinders)	195
237	Torque	50
99	Torque balance	50
102	Training power units.	
	See "Training systems in I	hydraulics"
199	Training systems in hydraulics	
312	(training power units)	374
286	Turbulent flow	37
278	Type designation of hydraulic valves	132
37	Types of operation of hydraulic valves	130
	direct-operated valve	130
130	electrical operation	134
129	Hydraulic or pneumatic operation	134
	pilot-operated valve	130
106	U	
200	Ultrasonic measuring procedure for flov	v
296	measurement	. 296
sors"	Units of measurement of pressure	25
	Unloading valves	165
164	-	100
209	V	
174	Valve operation	130
367	direct-operated valve	130
129	pilot-operated valve	130
127	Valves. See "Hydra	
356	Vane motors	224
129	Vane pumps	83
364	Variable speed pump drives (Sytronix)	372
365	Velocity control with flow control valves	309
128	Velocity control with throttle valves	304
278	Vertical stacking	260
	Viscosity	
366	Dynamic viscosity	31
	Kinematic viscosity	31
228	Viscosity classes	33
89	Viscosity index	33
bols"	Viscosity of fluids	31
051	-	01
351	W	
352	Work (physical)	53
372	Workstation. See "Trainin	g systems"

Bosch Rexroth AG

Bosch Rexroth Academy Unterduerrbacher Straße 10 97080 Wuerzburg, Germany Phone: +49 9352 18-1920 E-Mail: training@boschrexroth.de www.boschrexroth.com/academy

